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of multiple quantum-filtered NMR spectra of quadrupolar nuclei
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Abstract

In this paper, we present a computer program which simulates NMR multiple quantum-filtered spectra of quadrupolar nuclei as
a function of physical parameters, of the type of experiment and experimental conditions. The program works by solving relaxation
theory equations for the given system, and it can be useful in order to plan the ideal conditions to set up specific experiments or to
give a physical interpretation of experimental results. The program allows to independently follow the dependence of individual
coherences and relaxation rates as a function of up to 50 parameters regarding the physical properties of the system under inves-
tigation, sample conditions and instrumental setup making it an helpful tool also for teaching purposes.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Although around two-thirds of nuclei usually quoted
in NMR tables have spin I > 1/2, the vast majority of
studies have been limited to the relatively few I = 1/2
nuclei. As a consequence, most theoretical and experi-
mental advances have focused on improving the perfor-
mance of NMR investigations of 1H, 13C, 15N, 31P, 29Si
of progressively larger molecules in solution or in the so-
lid state.

However, the interest in some I > 1/2 nuclei (espe-
cially form the biological point of view), such as 2H,
17O, 23Na, 25Mg, 33S, 35Cl, 39K, 43Ca, has attracted sev-
eral investigators who provided many ways of facing the
intrinsic complexity of such NMR studies [1–4]. In fact,
the non-spherically symmetric electrical charge distribu-
tion within I > 1/2 nuclei gives rise to a nuclear electrical
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quadrupole moment, which interacts with electric field
gradients, producing splittings of the nuclear energy
levels.

Therefore, the interpretation of NMR data for the
study of the atomic properties of systems containing
quadrupolar nuclei, although potentially highly infor-
mative due to the large number of parameters involved
in both the observed shifts and relaxation rates, is gen-
erally hindered by the complexity of the equations
describing these phenomena. These equations are espe-
cially cumbersome in case of nuclei with high nuclear
spin quantum number because of the increased number
of atomic levels and therefore possible transitions.

A tool for interpreting the experimental spectra in
terms of physical parameters (e.g., viscosity of the solu-
tion, charge distribution symmetry around the nucleus,
molecular weight of the system) and the effects of pulses
and delays could be useful for unraveling the chemical
processes under investigation.

The presence of slow motions on the NMR time scale
(that is when the system is outside the extreme narrow-
ing limit) allows the detection of multiple-quantum
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coherences which can be originated by the non-monoex-
ponentiality of the relaxation rates or in cases of par-
tially oriented systems. Such coherences are in some
cases narrower than the corresponding single-quantum
coherence and can be used for a variety of applications.
For example, multiple quantum filtered (MQF), and in
particular triple quantum-filtered (TQF) experiments
have been extensively used to reduce the large signal
due to extracellular 23Na seen in single quantum (SQ)
spectra [5,6]. Some contribution from extracellular
23Na is present in the observed signal, but it can be iden-
tified by using shift reagents acting outside the cell mem-
brane [6]. Another application has been found for 2H
which gives rise to double quantum (DQ) coherences
in the presence of residual quadrupolar interaction. By
filtering the large quantity of isotropic tumbling heavy
water, it is possible to select water interacting with bio-
logical fibers such as tendons and use the signal for cre-
ating images in a non-invasive fashion [7].

In this paper, we present a useful tool to interpret
NMR data on quadrupolar nuclei. SIMQUADNMR
is a program which simulates NMR MQF spectra of
quadrupolar nuclei based on the physical parameters
of the system (motional correlation time, exchange rates,
etc.) and on the experimental conditions (magnetic field,
pulses, and delays). The program can be used for esti-
mating the possibility to run one kind of experiment
(and in case optimize the experimental parameters) or
for interpreting from a physical point of view the exper-
imental spectra.
2. Algorithm

The program solves the evolution of the density ma-
trix (expressed in a appropriate tensor basis) describing
a quadrupolar nucleus under the effect of hard pulses
(rotation matrices) and of the hamiltonian acting during
delays (Liouville–von Neumann differential equation) of
a multiple quantum filtering pulse sequence.

Nuclei with spin larger than 1/2 have a non-vanishing
electric quadrupole moment, due to their asymmetric
charge distribution. The quadrupole moment can inter-
act with local oscillating electric field gradients, due to
electrons, and this is almost always the main relaxation
mechanism in solution [8,9].

The quantum-mechanical expression for the quadru-
pole Hamiltonian is

H 1ðtÞ ¼
e2qQ

4�hIð2I � 1Þ 3I2z � IðI þ 1Þ þ 1
2
gðI2þ þ I2�Þ

� �
;

ð1Þ
where I is the nuclear spin quantum number, eq is the
main component of the diagonalized tensor describing
the second derivative of the electric potential (q is called
the quadrupolar factor), eQ is the nuclear quadrupolar
constant, and g is the asymmetry parameter
(0 6 g 6 1; g = 0 in case of axial symmetry of the nucle-
ar surroundings). The quantity e2qQ/�h is called the
quadrupole coupling constant and it measures the mag-
nitude of the nuclear quadrupolar interaction.

2.1. Spin tensors basis

Solving the evolution for a time-dependent Hamilto-
nian requires to expand the density matrix in an appro-
priate orthonormal spin basis of dimension (2I + 1)2

[10,11]. We decided to use two possible bases {Br}.
(1) The spherical spin tensors basis [12]. This has the

advantage of containing tensors directly related to
observables: for example, Iz is related to equilibrium
magnetization while I+ (or I�) is related to the observa-
ble signal.

(2) The coherences basis: this basis has one element
different from zero in every basis matrix and represents
populations and coherences (1-quantum to n-quantum
going far from the diagonal) of the system. This basis
is useful to get insight into the physical properties of
the system (for example the effect of the correlation time
on each transition).

In both bases, each element is identified by two in-
dexes q and k. In particular, q describes q-quantum tran-
sitions between levels and can be either positive (for
jumps from bottom to top energies) or negative (from
top to bottom); k distinguishes between different
q-quantum transitions in the system (for example in
23Na three different single-quantum transitions are pos-
sible). In addition, k can range from 0 to the rank of the
matrix (2I) while q ranges from �k to k; the rank of
the matrix indicates the maximum transition possible
in the system (for 2H the highest transition is the dou-
ble-quantum).

2.2. Relaxation and frequency matrices

The calculation of the evolution of r (density matrix)
during the delays of the pulse sequence, requires an eval-
uation of the frequency and relaxation matrices, X and
C, defined as [10]:

Xr;s ¼ hBrj½H 0;Bs�i=hBrjBri ð2Þ
and

Cr;s¼hBrjĈBsi=hBrjBri

¼1

2

X
q

X
p

hBrj½A�q
k;p0 ; ½A

q
k;p0 ;Bs��i=hBrjBri

n o
ð�1ÞqjðpxÞ;

ð3Þ
where j (px) are the spectral density functions (vide in-
fra), Br,s are two elements of the tensor basis used to de-
scribe the density matrix and Aq

k;p are tensor spin
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operators used for the decomposition of the quadrupo-
lar Hamiltonian H1 [13]:

A0
2;0ði; jÞ ¼ f2I2z ði; jÞ � 1

2
½ðIþI�Þði; jÞ þ ðI�IþÞði; jÞ�g;

A1
2;1ði; jÞ ¼

ffiffi
6

p

2
½ðIþIzÞði; jÞ þ ðIzIþÞði; jÞ�;

A�1
2;1ði; jÞ ¼

ffiffi
6

p

2
½ðI�IzÞði; jÞ þ ðIzI�Þði; jÞ�;

A2
2;2ði; jÞ ¼

ffiffi
6

p

2
I2þði; jÞ;

A�2
2;2ði; jÞ ¼

ffiffi
6

p

2
I2�ði; jÞ;

ð4Þ
where i and j indexes indicate rows and columns.

It should be noticed that our description does not in-
clude interactions other than quadrupolar (e.g., dipolar
or chemical shift anisotropy) although in some cases
cross-correlation with other mechanisms may be rele-
vant even when the quadrupolar interaction is the main
relaxation mechanism [14]. Comparison with experi-
mental data may reveal such cases.

The case of systems where the motion is locally aniso-
tropic is considered in H0, which is defined as [8,9]:

H 0 ¼ DxIz þ xq 3I2z � I2 þ g I2x � I2y
� �h i

ð5Þ

with

xq ¼ f
eQ

4�hIð2I � 1Þ V zz ð6Þ

and

V zz ¼ eq cos2h� 1

2
sin2hþ 1

2
gsin2h cosð2uÞ

� �
; ð7Þ

where Dx = x0 � x is the offset of the RF carrier fre-
quency x from the resonance frequency x0, f is a scaling
factor reducing the quadrupolar coupling to the residual
one xq due to fast exchange with isotropic states where
the quadrupolar interaction averages to zero, h and / de-
fine the orientation of the electric field gradient tensor
with respect to the static field, g is the asymmetry param-
eter, Vzz is the z component (the largest) of the electric
field gradient and eQ is the nuclear quadrupolar con-
stant. In the presence of a distribution of sites with differ-
ent local orientation and residual quadrupolar coupling,
the global spectrum can be reconstructed by adding a
series of spectra obtained by simultaneously varying
both parameters with a distribution of values which best
reproduces their probability. The present description im-
plies fast exchange between isotropic and locally aniso-
tropic sites and slow exchange among anisotropic sites.

To calculate the spectral densities, three models of
motion were considered: sphere, prolate ellipsoid, and
oblate ellipsoid. In the program the rotational diffusion
coefficients D^ and Di can be given in input or calculated
(clicking on the motion button) based on the size of the
molecule, the hydration radius, the viscosity and the
chosen model; the molecule size, if unknown, can be
estimated based on the molecular weight given the axial
ratio and assuming a specific volume of 0.73 cm3 g�1.
The equations used to calculate D^ and Di as a function
of molecule size, for the three models, are reported else-
where [15].

Once the rotational diffusion coefficients were deter-
mined, the spectral densities were calculated for the iso-
tropic and anisotropic case as follows [16]:

(a) isotropic

JðpxÞ ¼ 2

5

e2qQ
4�hIð2I � 1Þ 1� 1

3
g

� 	
sc

1þ ðpxscÞ2

 !
; ð8Þ

where sc is given by

1

sc
¼ 6D?; ð9Þ

(b) anisotropic

JðpxÞ ¼ 2

5

e2qQ
4�hIð2I � 1Þ

� 3cos2a� 1� gsin2a cosð2bÞ

 �2 sc0

1þ ðpxsc0Þ2

 !(

þ 12sin2a cos2að1þ 2g cosð2bÞÞ þ 1

3
g

� 	2
 "

�
�
1� cos2ð2bÞsin2aÞ

!
sc1

1þ ðpxsc1Þ2

 !#

þ
�
3sin4a� 2gsin2aðcos2aþ 1Þ cosð2bÞ

þ 1

3
g2ðcos2ð2bÞsin4aþ 4cos2aÞ

�
sc2

1þ ðpxsc2Þ2

 !)
;

ð10Þ
where scm = 0,1,2 is given by:

1

scm
¼ 6D? þ m2ðDk � D?Þ ð11Þ

and a and b are the angles defining the orientation of the
electric field gradient tensor with respect to the rota-
tional diffusion tensor (considered axially symmetric).
a is the angle between the z axis of the electric field ten-
sor and the z axis of the diffusion tensor, b defines the
remaining orientation.

Multiplication by nxs is used to obtain the imaginary
part of the spectral density function, leading to second
order frequency shifts of the resonance lines, which are
called dynamic frequency shifts (DFS) and can be in-
cluded in the frequency matrix [17].

During the calculation the program checks for Red-
field limit violation and warns the user when the corre-
lation time modulating the quadrupolar interaction is
larger than 1/100 (Redfield limit approaching) or 1/10
(Redfield limit violated) of the inverse of the relaxation
matrix element.
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In addition, the exchange rates are included in the
relaxation matrix. The program allows up to three sites.
Each site enlarges all matrices adding rows and columns
to the dimension of the original one-site matrix. On the
other hand, only few elements have to be calculated:

Kmn ¼ knm ðm6¼nÞ ð12Þ

and

Kmm ¼ �
X
n¼1
n6¼m

kmn; ð13Þ

where Kmn is the matrix element connecting correspond-
ing coherences in different species involved in the equi-
librium and kmn are the rate constants for the
conversion of the species m into the species n [10]. The
concentrations of the various species at equilibrium
can be calculated by clicking on the calculate equilibrium
conc button, if the analytical concentrations and the
equilibrium constant are known. The program accounts
for three models of exchange phenomena based on dif-
ferent kinds of equilibrium:

(1) Q1 ¡ Q2

(2) Q1 + bB ¡ Q2 for which kon is replaced by kon[B]
b

(3) Q1 + bB ¡ Q2 + cC for which kon is replaced by
kon[B]

b and koff by koff[C]
c.

In the equations Q indicates the species containing
the quadrupolar nucleus and B, C are generic interacting
molecules.
2.3. Building the propagator

As in the case of the rotation matrix for the evolution
during pulses, the operator exp((�C � iX)t) has to be
applied to the density matrix for the evolution during
delays. Using the Taylor expansion may require in this
case a long computational time besides overflow of the
computer; in fact, due to the high numbers appearing
in the relaxation and frequency matrices for such sys-
tems, especially in slow motion regime, the expansion
may require many terms to reduce the error.

To overcome this problem, we used a modified ver-
sion of the Taylor expansion, the ‘‘scaling and squaring’’
method [18, and references therein]: the idea is to choose
m to be a power of two for which eA/m can be reliably
and efficiently computed, and then to form the matrix
(eA/m)m by repeated squaring.

2.4. The pulse sequence

Once the evolution under the effect of the pulses and
during the delays is defined, the equilibrium density
matrix is let to evolve under the effect of the MQF pulse
sequence whose basic scheme is 90�–D/2–180�–D/2–90�–
t1–90� [19–24]. In this experiment, multiple-quantum
coherences are created, selected, and transformed into ob-
servable magnetization. The program allows the intro-
duction of an extra pulse and delay besides giving the
possibility of choosing the phase of the pulses (x or y)
although the effect of spin lock is not herein considered.
The phase cycling used for coherence selection is simu-
lated by filtering the density matrix after t1 evolution that
is, in case of a q-quantum filter, by extracting terms which
are q elements distant from the main diagonal. During
each delay the density matrix is expanded into the chosen
basis set, the propagator is built according to the evolu-
tion time and applied to the coefficients of the expansion.
Then, the density matrix is reconstructed using the new
coefficients. During the acquisition time, the propagator
corresponding to the dwell time is built and used for all
points of theFID.Eachpoint of theFIDhas an imaginary
and a real part, which are obtained by taking the trace of
the products between the imaginary and real parts of the
density matrix with the operator I+, which represents the
observable magnetization. The Fourier transform finally
generates the spectrum in the range of frequencies chosen.

2.5. Calculating the q factor

The quadrupolar q factor depends on the second
derivative of the potential o2V/oz2 (Vzz := eq := o2V/
oz2), which arises from the presence of external charges
(nuclei or electrons) in the neighborhoods of the quad-
rupolar nucleus under examination.

Given the geometry of the molecule in Cartesian
coordinates, the components of the tensor describing
the second derivative of the potential are calculated as
follows [9]:

V ab ¼
o
2V

oaob
¼ 1

4pe0

e
r3

3xaxb
r2

� dab

� 	
ð14Þ

with a, b = x,y,z.
Once the tensor has been calculated, it is diagonalized

using the Jacobi method to align the principal axes of
the tensor with the Cartesian axes. Finally, the z compo-
nent is by definition the largest among the three and the
q factor is calculated as q = (o2V/oz2)/e while the asym-
metry parameter is calculated as g = |Vxx � Vyy|/Vzz.

The geometry of the molecule can be provided also in
spherical coordinates which are then transformed by the
program into Cartesian to use the same algorithm.

This calculation takes into account only neighboring
atoms and their charges and is therefore valid only for
closed shell quadrupolar nuclei (where the electronic
charge is spherically symmetric and thus does not con-
tribute to quadrupolar coupling). It is important to
underline that the calculation does not take into account
the Sternheimer factor c (r) [9] which accounts for distor-
tion of the spherical symmetry of the electronic charge
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due to the presence of an external charge. This factor
leads to a correction of q such that q = q0 [1 � c (r)],
where q0 is the theoretical value neglecting this effect.
This factor, although negligible for open shell nuclei,
may affect by one or two orders of magnitude the calcu-
lated value of q provided the charge dwells outside the
closed shell charge distribution. In this case, the factor
becomes independent of the distance from the nucleus
r and quite sizable. On the contrary, when the charge
is well inside the closed shell, the Sternheimer factor is
dependent on the distance r and in general �1 making
the correct estimation of the q factor possible.

2.6. Write equation routine

From a theoretical point of view, the analytical form
of the evolution of the various coherences describing the
system may be useful to understand the effect of relaxa-
tion. The equations for the evolution of each tensor
describing different parts of the global density operator
(that is the magnetization) constitute a system of inter-
dependent differential equations in which each variable
(operator) is multiplied by a factor which in turn is a lin-
ear combination of the spectral densities at zero fre-
quency, Larmor frequency and twice the Larmor
frequency. To write the equations, the coefficients of
the linear combinations of the spectral densities have
to be determined and this is done by solving Eq. (3)
without the summation over the p index.

Running this routine in the coherences basis allows to
get insight into the evolution of each transition; the rou-
tine in fact translates the names of the operators into
populations and transitions between levels (the conver-
sion is shown in a legend). When using the spherical spin
tensors basis, only few equations have a direct physical
meaning, the ones involving the operators Iz, I

+ or I�.
To get insight into the other tensors, a legend is made
in this case that translates each spherical spin tensor in
terms of common operators as products of Iz, I

+, I�,
I2, and their powers. In other words, the legend is built
by expanding the spherical spin tensors into this new ba-
sis which, on the other hand, is not orthogonal. As a
consequence the legend can only state the presence of
a contribution from each one of the common operators,
but cannot say how large this contribution is, unless
only one common operator can alone describe the spher-
ical spin tensor under examination. For example, in the
case of I = 3/2, the spherical spin tensor with q = 0 and
k = 1 is exactly �0.448Iz, while the spherical spin tensor
with q = 1 and k = 2 contains IzI

+ but also other terms.

2.7. Plotting matrices

The program allows visualization of the main
matrices calculated in the spin tensor basis used. These
include relaxation and exchange matrix, the frequency
matrix (including dynamic frequency shifts), the propa-
gator at a time t (that is the exponential form of the
relaxation, exchange and frequency matrices), the rota-
tion matrix with its inverse for a given angle, rank 2
matrices describing the Hamiltonian for the quadrupo-
lar interaction (the ones called Aq

k;p in Eq. (4)), all matri-
ces constituting the spin tensors basis, some common
matrices like Ix, Iy, I

�,. . . for a given I and the density
matrix at every stage of the pulse sequence.

This option may be a useful tool to get insight into
the physics of the experiment.

2.8. Plotting graphs

Making graphs of some properties of the spectrum is
a useful tool to optimize experimental parameters or to
derive physical parameters of the system under examina-
tion by comparing simulation with experimental data.
The program gives the possibility of plotting many spec-
tra one upon each other or in a 3D fashion and also to
plot the following properties:

� relaxation rates,
� cross-relaxation terms between coherences,
� coherences,
� peak height,
� linewidth,
� dynamic frequency shifts,

as a function of the following parameters (in logarith-
mic or linear increment):

Experimental

� the nucleus (spectra of different nuclei can be compared
and the different nuclei are chosen in the box named
‘‘periodic table’’; choosing the nucleus automatically
sets I, Q, c, natural abundance, but each of these
parameters can also be varied independently, as
explained below);

� temperature, T;
� sample concentration;
� active volume;
� magnetic field strength (expressed as proton

frequency frq_prot);
� delays of the pulse sequence (t1,D);
� rotation angle of each pulse;
� phase of each pulse;
� kind of filter;
� acquisition time;
� number of points for sampling the FID, TD;
� line broadening LB;
� number of scans NS;
� noise level;
� angles for phasing the spectrum at order zero and at

first order, and position of the cursor;
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� right (sw1) and left (sw2) limits of the spectral width;
� number of points for the Fourier transform, SI.

Physical

� correlation time modulating the quadrupolar interac-
tion sc;

� rotational diffusion coefficients D^ and Di;
� nuclear quantum number I;
� nuclear quadrupolar constant Q;
� gyromagnetic ratio c;
� percentage natural abundance of the selected isotope;
� frequency of the chosen nucleus at the given magnetic

field, x;
Fig. 1. Relaxation matrix of 23Na in the basis of spherical spin tensors.
Observable magnetization (represented by the tensor with q = 1 and
k = 1) has a cross-term (yellow) with the tensor identified by q = 1,
k = 3. This cross-term can transform single quantum transitions
(generated by the first 90� pulse) into triple quantum transitions
(generated by the third rank tensor after the effect of the second 90�
pulse). Assumed parameters are those reported in the caption of Fig. 4
for the bound form.

Fig. 2. Contribution of T11 (cyan), T12 (magenta), and T13 (blue) to the densit
(A) and isotropic (B) system. (C) y scale magnification of (B). The delay D was
see those reported in the caption of Fig. 4 for the bound form.)
� offset from the transmitter Dm;
� quadrupolar q factor measuring the size of the gradi-

ent of the electric field generated by the ligands;
� asymmetry parameter g;
� angles of the electric field gradient tensor with respect

to the rotational diffusion tensor, a and b;
� scaling factor f reducing the magnitude of the quad-

rupolar interaction to the residual one;
� angles h and / formed by the molecular local symme-

try axis with the external magnetic field in partially
oriented systems;

� residual quadrupolar interaction xq present in par-
tially oriented systems;

� exchange rates kon, koff;
� molar fraction of each site;
� concentrations of the various species present (in case

of exchange).

Each property can be plotted as a function of one or
two variables (2D or 3D graph). Alternatively, one
property which is constituted by more elements (e.g.,
all the coherences) can be plotted as a function of one
variable generating a 3D graph. In such cases, it is some-
times useful to filter out elements which are not of inter-
est. For example, when monitoring relaxation rates one
may be interested in following only single-quantum
coherences or one cross-relaxation term.

Finally, one can choose to monitor the imaginary or
real part of any coherence at each stage of the pulse se-
quence to optimize delays and pulses.

2.9. Example, the case of 23Na in biological systems

As a case example we will reproduce the spectrum of
Na+ ion interacting with a locally anisotropic system
(e.g., cartilage).

Due to the spin number I = 3/2 the system can be de-
scribed with tensors up to the third rank. It has been
y matrix after the delay D of the pulse sequence (Eq. (15)) for an aligned
varied between 1 ls and 0.6 ms. (For assumed microscopic parameters



Fig. 3. DQF (A,C) and TQF (B) simulated spectra of Na+ interacting with cartilage. All parameters were chosen to reproduce data reported in [25].
Pulse sequence parameters are D = 1.0 ms (magenta), 1.6 ms (blue), 2.2 ms (cyan); t1 = 30 ls, e = 90� (A,B) and 54.73� (C). Assumed microscopic
parameters for the bound Na+: isotropic motion with a rotational diffusion value of 1.85 · 108 s�1 (equivalent to a sphere tumbling with a rotational
correlation time of 0.9 · 10�9 s), axial electric field with q = 3.97 · 1039 J m�2 C�2 (resulting in a quadrupolar coupling e2qQ/h of 0.6 MHz), a
residual quadrupolar coupling due to partial orientation with respect to the magnetic field of 10 kHz (obtained by a proper combination of the
scaling factor and the orientation angle h). Assumed microscopic parameters for the free Na+: isotropic motion with a rotational diffusion value of
8.33 · 109 s�1 (equivalent to a sphere tumbling with a rotational correlation time of 2 · 10�11 s), axial electric field with q = 1.53 · 1039 J m�2 C�2

(resulting in a quadrupolar coupling e2qQ/h of 1.55 MHz), no residual quadrupolar coupling. The exchange between these two sites was described by
using the kinetics constants k = 1 · 107 s�1 and k�1 = 2.2 · 107 s�1 where the ‘‘on’’ reaction describes the conversion from free to bound sodium. In
all cases a field was chosen at which 23Na resonates at 52.9 MHz. Other parameters T = 298 K, molar fraction of the bound form = 0.018.

Fig. 4. (A) Quantification of T13 tensor contribution to the density matrix after the delay D of the pulse sequence (Eq. (15)) as a function of the
motional correlation time and D value. (B) DQF and TQF simulated spectra of Na+ interacting with a large protein (e.g., bovine serum albumin) as a
function of the delay D ranging from 1 ls (left) to 3 ms (right). All parameters are those reported in the caption of Fig. 3 except the rotational
diffusion of the bound form (9.31 · 106 s�1). The rotational diffusion was estimated through Stokes–Einstein law by the molecular weight of the
interacting protein (68 kDa), the viscosity of water at 298K (8.938 · 10�4 kg m�1 s�1) assuming a hydration radius of 0.27 nm (corresponding to a
value in-between half and one hydration sphere) and a specific volume of 0.73 cm3 g�1. No preferential orientation of the system with respect to the
external field was imposed. Pulse sequence parameters are e = p /2; D = 1.0 ms, t1 = 30 ls.

148 N. D�Amelio et al. / Journal of Magnetic Resonance 172 (2005) 142–151
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shown that in isotropic media the density matrix is a
combination of only even ranked spherical spin tensors,
while in aligned systems or in solid state odd rank ten-
sors are created [25]. This observation has been
exploited to distinguish by multiple-quantum filtering
the free sodium from that interacting with aligned tis-
sues in biological systems [25].

Double and triple quantum-filtered spectra are com-
monly measured using the pulse sequence

p=2–D=2–p–D=2–�–t1–�–t2ðAcqÞ ð15Þ
with e = p/2. In the sequence, the first pulse transforms
the equilibrium magnetization T01 (where the first sub-
script indicates the quantum jump and the second the
rank) into single quantum T11; no pulse can generate
out of this tensor transitions of higher order than its
rank but multiple quantum transitions are originated
by relaxation phenomena acting during the delay D.
Relaxation is able to transform T11 into T13 which, in
turn, generates double and triple quantum transitions
(T32 and T33) under the effect of the second 90� pulse.
Fig. 5. Density matrix evolution under the effect of a MQF pulse sequence
(bottom) parts of the matrix are shown.
The last 90� pulse makes the T33 and T32 tensors obser-
vable (by conversion into T11). The conversion from T11

to T13 is easily understood looking at the equation (that
can be calculated by the write equation routine) govern-
ing the relaxation of T11 tensor in the spherical tensors
basis, which mixes the two terms:

dðT 11Þ
dt

¼ e2qQ
4�h

� 	2

T 11 10:8Jð0Þ þ 18Jð-Þ þ 7:2Jð2-Þ½ �f

þT 13 8:8Jð0Þ � 8:8Jð2-Þ½ �g ð16Þ

or by the presence of a cross-term between these two ele-
ments of the relaxation matrix calculated in the same ba-
sis (Fig. 1).

Fig. 2 shows a plot generated by the program of T11,
T12, and T13 as a function of the creation time D in
aligned and isotropic media. The figure clearly shows
that the double quantum tensor T12 is created only in
the presence of alignment and thus DQF experiments
can select sodium ions interacting with aligned tissues
such as cartilage or DNA. As a consequence, DQF spec-
for slowly tumbling Na+ ion. In each line, real (top) and imaginary
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tra of aligned systems have contribution from both T12

and T13, while TQF spectra have contribution from only
T13. This makes the shape of the resulting DQF spec-
trum dependent on the relative contribution of the two
tensors (and thus on the creation time D, Fig. 3A) while
the TQF spectrum only changes in amplitude at different
D (Fig. 3B). Furthermore, it has been shown that using a
value of 54.7� for e eliminates the contribution from the
third rank tensor [20,25,26] (Fig. 3C).

As the coherence creation is governed by relaxation,
which in turn is modulated by the motion, slowly tum-
bling ions can be distinguished from fast tumbling ions
and this observation has been exploited to distinguish
between extra- and intracellular sodium in biological
samples. Fig. 4A shows that the coherence transfer from
T11 to T13 is more efficient for slowly tumbling systems
(isotropically tumbling). Moreover, triple quantum filter
is more sensitive to slowly tumbling sodium with respect
to double quantum [27] as demonstrated by the compar-
ison of the simulated spectra (Fig. 4B). The overall pro-
cess can be visualized following the density matrix
evolution (Fig. 5) in which it is clear that the initial
magnetization (on the diagonal of the density matrix)
is converted by the first pulse into single quantum mag-
netization (one space apart from the diagonal); the sec-
ond 90� pulse generates double and triple quantum
transitions (two and three spaces apart from the diago-
nal, respectively) to be selected by the filter, and the last
pulse converts the filtered magnetization into the obser-
vable one.
3. Conclusions

We believe that this program can provide a useful
user-friendly tool to understand the physical phenomena
giving rise to the NMR spectrum of a quadrupolar nu-
cleus. It can be used for planning the ideal conditions
to set up specific new experiments or to give a physical
interpretation of experimental results.

The Excel platform has the advantages of making the
program easily exportable besides allowing the user to
do personal modifications. The program was fully tested
for Microsoft Visual Basic 6.0. Finally, we believe that
the completely interactive interface makes it a useful
tool also for educational purposes.
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